Библиотека

БиблиотекаВОЗДЕЙСТВИЕ ЧЕЛОВЕКА НА ПРИРОДНЫЕ ПРОЦЕССЫ

Мы рассказали о некоторых наиболее значительных катастрофах в истории нашей планеты. Посмотрим же, насколько вероятны подобные явления в будущем. Безусловно, извержения вулканов, землетрясения и цунами будут происходить и дальше. Не можем мы исключить и случайные падения крупных метеоритов или даже астероидов.

Однако нет никаких сомнений в том, что с каждым десятилетием контроль человека за этими стихийными бедствиями станет эффективнее, и в недалеком времени опасные для жителей нашей планеты последствия катастроф можно будет почти полностью предотвратить.

ПРОГНОЗ ЗЕМЛЕТРЯСЕНИЯ

Ни одно стихийное бедствие не происходит так неожиданно, как землетрясение. Своеобразной его особенностью является то, что оно разрушает в основном искусственные постройки, возведенные рукой человека. Конечно, во время сильных землетрясений происходят горные обвалы, оползни, иногда запруживаются реки, но такие явления относительно редки, ограничены небольшими по площади зонами и обычно приурочены к крутым склонам гор, где нет человеческих жилищ.

Степень опасности землетрясения существенно менялась в зависимости от уровня и условий развития человеческого общества. Когда первобытный человек добывал себе пищу охотой, он не строил постоянных жилищ, поэтому землетрясения не были для него угрозой. Не страшны землетрясения и скотоводам: их переносные войлочные юрты выдерживали любую сейсмическую катастрофу,

Издавна на Земле существовала определенная зональность в распределении той опасности, которую таило для людей землетрясение. Эта зональность контролировалась в первую очередь климатической зональностью.

В тропическом поясе, где люди круглый год живут в бамбуковой или тростниковой хижине, землетрясения не страшны. Чумы и яранги жителей приполярных стран, построенные с помощью жердей и звериных шкур, не реагируют на подземные толчки. Несильно влияют подземные удары и на постройки умеренной лесной зоны планеты. Рубленые деревянные дома очень устойчивы и разрушаются (но не обваливаются) лишь при очень сильных землетрясениях.

Только один климатический пояс Земли — область пригодных для пахоты степей и оазисы орошаемого земледелия во всю меру ощущают ужас сейсмических катастроф. Земляные постройки и здания из кирпича, которые преобладают в этом поясе, больше всего подвержены сейсмическим ударам. Даже толчки средней силы разрушают стены каменных зданий, что приводит к гибели находящихся в доме людей. Только в течение последних 100—120 лет в связи с бурным ростом городов во всех климатических поясах произошли такие землетрясения, как Лиссабонское (1755), Сан-Францисское (1906), Мессинское (1908), Токийское (1923), Ашхабадское (1948), подобных которым, за исключением территории Восточного Китая, в античное время и в средние века почти не было.

Случись Сан-Францисское землетрясение на 100 лет раньше, оно почти не причинило бы разрушений. На месте этого города в 1806 г. располагались лишь деревянные строения небольшой русской колонии.

В ближайшем будущем рост старых городов и строительство новых будут идти еще интенсивнее. Значит ли это, что пропорционально возрастет и опасность землетрясений? Отнюдь нет. Землетрясения будут все менее и менее страшны, ибо технические средства уже сейчас позволяют возводить жилые здания любой этажности и строить промышленные сооружения любых размеров которым не угрожают сильнейшие землетрясения. Сейчас от землетрясения страдают главным образом давно построенные здания, возведенные без применения специальных антисейсмических поясов и других усиливающих прочность конструкций.

Борьба с землетрясением началась давно. Человек столкнулся с двумя проблемами: как сделать здание таким, чтобы оно не разрушалось от подземных ударов, и как установить районы, где происходят землетрясения и где сильных подземных ударов не бывает. Попытка ответить на эти вопросы привела к возникновению сейсмологии — науки, изучающей землетрясения и поведение искусственных сооружений при подземных ударах. Инженеры-строители начали разрабатывать конструкции жилых зданий и промышленных сооружений, способных выдержать сейсмическую катастрофу. В горах Тянь-Шаня, на реке Нарын, построена Токтогульская высотная плотина и гидростанция на 1200 МВт. Гидротехнический узел возведен с таким расчетом, что выдержит даже катастрофические землетрясения.

Чтобы определить сейсмоопасные районы, необходимо точно знать место, где происходят землетрясения. Наиболее полные данные о подземном ударе можно получить, регистрируя приборами упругие волны, появляющиеся в земле при землетрясении. Сейсмологи научились определять координаты происшедшего землетрясения, глубину его очага, силу подземного удара. Это позволило составить карту эпицентров землетрясений, наметить зоны, где возникали подземные толчки той или иной силы. Сопоставляя эпицентры землетрясений с геологическим строением территории, геологи выделили те места, где землетрясений еще не было, но, судя по сходному строению с местами, подвергавшимися подземным ударам, возможны в недалеком будущем. Так родился прогноз места возникновения землетрясений и их максимальной силы. Наша страна — первая в мире, где карта сейсмического районирования, как ее официально называют, была впервые утверждена в качестве документа, обязательного для всех проектирующих и строительных организаций. В сейсмически опасных районах строители должны возводить лишь такие жилые и административные здания и промышленные объекты, которые бы выдержали землетрясение показанной на карте силы. Разумеется, карты прогноза землетрясения не могут считаться совершенными. С течением времени по мере накопления данных они пересматриваются и уточняются. На рис. 30 представлен один из вариантов такой карты, составленной в Институте физики Земли АН СССР.

Рис. 30. Карта сейсмического районирования территории СССР

Карта сейсмического районирования показывает, в каких местах нашей страны и какой максимальной силы возможны землетрясения. Для проектирующих организаций и строителей такая карта служит важным и необходимым документом, по для населения, живущего в сейсмоопасной зоне, куда важнее знать, когда именно произойдет землетрясение. Заметим, что в последние годы этот вопрос все больше и больше интересует и строителей. Кроме того, проектирующим организациям необходимо знать, происходят сильные землетрясения с периодичностью раз в тысячелетие или же в 20 лет. В первом случае усиливающие сооружения антисейсмические конструкции следует применять лишь при строительстве некоторых долговременных объектов (если это, конечно, не жилые помещения). Во втором — для всех построек.

Прогноз времени возникновения землетрясения подразделяется в настоящее время на долгосрочный и на выявление предвестников, за несколько часов или минут предупреждающих о надвигающейся катастрофе.

Долгосрочный прогноз основывается на следующих физических предпосылках. В упрощенной схеме процесс подготовки и проявления землетрясений можно себе представить как накопление и перераспределение в некоторой области земной коры потенциальной энергии — энергии упругих напряжений. В момент землетрясения эта энергия частично или полностью высвобождается. Для того чтобы произошло следующее землетрясение, нужна новая порция энергии; следовательно, должно пройти время, пока энергия накопится. В одних случаях это несколько дней или месяцев, но чаще десятки или даже сотни лет. Как говорилось, в Ашхабаде в 1948 г. была разрушена мечеть Аннау, простоявшая более 600 лет.

На основе детального изучения сейсмичности Курило-Камчатской зоны С. А. Федотов предложил приблизительный долгосрочный прогноз землетрясений по пятилетиям. В прогнозе содержатся вероятностные оценки проявления сильных землетрясений, выделены районы, где в настоящее время возможны катастрофические сотрясения. Позже такой же прогноз был разработан для Калифорнии (США). В частности, было показано, что разрушительные землетрясения с магнитудой 8 могут происходить раз в 100 лет, а более слабые — раз в 20 лет. Хотя такой прогноз не решает проблемы полностью, он помогает составлять карты сейсморайонирования с приблизительной оценкой повторяемости землетрясений.

Еще важнее обнаружить предвестников землетрясения, непосредственно извещающих о приближающейся сейсмической катастрофе. Давно замечено, что животные чувствуют приближение подземного удара. За несколько минут до землетрясения домашний скот, собаки, кошки, крысы проявляют беспокойство, стараясь выбраться из закрытых помещений. Перед землетрясением в Неаполе покинули свои жилища муравьи. За два дня до землетрясения в прибрежных районах Японских островов неоднократно появлялась необычная рыба шестиметровой длины — усатая треска, живущая на больших глубинах. По японской мифологии, виновницей землетрясений является огромная рыба «намадзу», которая якобы щекочет своими усами морское дно. Изображения ее издавна наклеивались на окна как заклятие от подземных толчков. Японские ученые считают, что это суеверие было порождено появлением у берега легендарной рыбы накануне крупных землетрясений.

Все эти факты свидетельствуют о том, что подземному толчку предшествуют какие-то физические явления. По если их чувствуют животные, то они могут быть зафиксированы и приборами. Предполагается, что в области будущего очага землетрясения происходит изменение физических параметров среды. В результате деформируется земная поверхность, изменяются упругие, магнитные, электрические свойства пород и т. д. Успех эксперимента зависит прежде всего от того, насколько близко будут расположены приборы от эпицентра прогнозируемого землетрясения, поскольку величины, характеризующие возможные параметры, убывают пропорционально квадрату расстояния от очага. Поэтому для решения задачи прогноза необходимо находить места, где землетрясения происходят достаточно часто.

Поиски предвестников землетрясения ведутся сейчас в нескольких направлениях. Пожалуй, одной из первых попыток «предсказать» землетрясение было изучение так называемых форшоков — слабых толчков, иногда предшествующих сильному подземному удару.

Частоты колебаний форшоков заметно выше, чем автершоков (толчков, следующих за сильным землетрясением). Длительность проявления этих высокочастотных толчков, возможно, как-то связана с силой готовящегося землетрясения и может помочь установить момент его возникновения. К сожалению, это происходит не всегда. Известно большое число землетрясений, когда сильный удар приходил совершенно неожиданно. Все же не исключено, что для отдельных типов землетрясений изучение характера мельчайших потрескиваний, фиксируемых только очень чувствительными приборами, может дать сведения о приближающейся катастрофе.

Следующий путь обнаружения предвестников землетрясений — исследование медленных движений земной коры — наклонов земной поверхности. Наклономеры различных систем, установленные более 25 лет назад на специальных бетонированных площадках или в штольнях, пробитых в скалах, фиксируют малейшие колебания поверхности Земли. Иногда перед подземным толчком были обнаружены «бури» наклонов. Как будто бы предвестник обнаружен! Однако в большинстве случаев наклономеры молчали. На показания данных приборов влияет множество факторов, в частности изменение атмосферного давления, длительно происходящее проседание фундамента и т. д. Говорить о прогнозе с помощью наклономеров как надежном способе преждевременно, но некоторые результаты все же обнадеживают. Обнаружено изменение наклонов в Токтогульской штольне перед двумя землетрясениями, возникшими вблизи аппаратуры. Одно — очень слабое (эпицентр 2 км) и второе — (эпицентр 5 км) силой до 6 баллов. В обоих случаях четко видно изменение характера наклонов за несколько часов до землетрясения.

В последнее время начал разрабатываться еще один метод прогноза землетрясений. Подземные удары представляют собой разрядку возникающих в земной коре напряжений. Очевидно, перед землетрясением такие напряжения возрастают. Это выражается в изменении скорости распространения упругих волн, отношения скоростей распространения продольных и поперечных волн и отношения их амплитуд. Эксперименты, проведенные в Гармском районе Памира, позволили получить некоторые обнадеживающие результаты. Наблюдается следующая закономерность: чем сильнее землетрясение, тем дольше длится аномальное состояние.

Наконец, недавно наметилось еще одно перспективное направление — изучение изменений магнитного поля Земли. Постоянное магнитное поле нашей планеты состоит из двух частей. Основная часть поля обусловлена процессами в земном ядре, другая — вызывается горными породами, получившими намагниченность еще за время своего образования. Магнитное поле, создаваемое намагниченностью горных пород, изменяется с изменением тех напряжений, в которых находятся горные породы в земной коре.

Подготовка землетрясения, как мы уже отмечали, состоит в накапливании напряжений в каком-то участке земной коры, что неизбежно меняет магнитное поле на земной поверхности. Удалось обнаружить резкое изменение локального векового хода магнитного поля после землетрясения. Произведены опытные оценки величины изменения магнитного поля, которое должно произойти в момент землетрясения. Опыты с искусственными взрывами подтвердили правильность этих расчетов.

За последние годы обнаружены и изменения в магнитном поле незадолго до землетрясения. За 1 час. 6 мин. до начала разрушительного землетрясения, происшедшего на Аляске в марте 1964 г. было отмечено возмущение в магнитном поле Земли. Изменение градиента магнитного поля между двумя пунктами, вблизи которых произошел ряд землетрясений, наблюдалось в 1966 г. Эти исключительно интересные результаты нуждаются еще в проверке, которая подтвердила бы связь наблюдаемых явлений именно с землетрясениями.

Ведутся также поиски предвестников землетрясений путем исследования электропроводности горных пород в сейсмических районах. Замечено, что в некоторых местах землетрясения иногда сопровождаются грозовыми разрядами с молниями. Следовательно, сейсмическое напряжение каким-то образом связано с электрическим полем. В Японии, например, существует древняя традиция предсказывать землетрясения по необычному появлению молний при ясном небе.

Наконец, судя по опыту Ташкентского землетрясения, важным индикатором предстоящего сильного толчка является изменение содержания радона в подземных водах. За некоторое время до толчка заметно увеличивается его концентрация. Недавно обнаружена связь между землетрясениями и извержениями гейзеров (периодических извержений горячей воды и пара в некоторых вулканических районах). Оказалось, что в Йеллоустонском национальном парке (США) за 2—4 года перед каждым землетрясением интервалы между извержениями гейзеров уменьшаются, а после подземного толчка снова увеличиваются.

Мы остановились довольно подробно на прогнозе землетрясений, так как это — наиболее неожиданное и сложное природное явление. Опасность других возможных катастроф (гигантских волн цунами, извержений вулканов или падения крупных астероидов) уже сейчас сравнительно невелика и с каждым 10-летием будет резко уменьшаться, поскольку об их приближении мы можем знать заранее. Но в последние годы выяснилось, что человеческая деятельность может вызвать подземный толчок. В США, в штате Колорадо, военное ведомство закачивало на глубину в 3 км воду, в которой были растворены устаревшие отравляющие вещества. Через шесть недель в этом районе произошло первое за 70 лет землетрясение, затем толчки стали повторяться. По-видимому, нагнетаемая под большим давлением вода способствовала сдвигу пород по старым разломам. Когда перестали закачивать воду, землетрясения постепенно прекратились. Этот факт послужил основанием для разработки оригинального метода предотвращения сильного землетрясения. Если обводнение трещин способствует землетрясению, то с помощью поочередной закачки воды в разные участки крупного разлома можно путем серии слабых спровоцированных толчков снять существующие в Земле напряжения и тем самым предупредить катастрофическое землетрясение.

На практике этот метод означает следующее: в избранном месте разлома бурят три скважины на расстоянии примерно 500 м друг от друга. Из крайних скважин выкачиваются подземные воды, чтобы «запереть» сброс в этих двух точках. Затем под давлением закачивается вода в среднюю скважину: происходит «миниземлетрясение», и в глубинных породах снимается напряжение. Когда же выкачивается вода и из средней скважины, весь участок становится безопасным, по крайней мере на определенное время.

Такая обработка крупного разлома потребует бурения около 500 скважин по 5 км глубиной каждая.

Слабые землетрясения возникают и в районах, где незадолго перед этим были созданы крупные водохранилища. Дополнительный вес воды водохранилища оказывает давление на горные породы и тем самым создает условие для возникновения подземных толчков. Возможно, этому способствует также проникновение воды по трещинам на глубину, что облегчает смещение пород по разрывам.

СЛУЖБА ОПОВЕЩЕНИЯ О ЦУНАМИ

Успешные действия человека по предупреждению стихийных бедствий наиболее наглядны на примере организации в ряде стран Тихоокеанского бассейна, в том числе на Дальнем Востоке, службы срочного оповещения о приближающемся цунами.

Сейсмические волны от землетрясения распространяются в земле со скоростью около 30 тыс. км/ч, тогда как волна цунами идет со скоростью порядка 1000 км/ч. На использовании разницы этих скоростей и построена служба оповещения о волнах от подводного землетрясения. Специальные цунами-станции оборудованы сейсмографами с сигналами, срабатывающими при регистрации сильного землетрясения. После сигнала дежурные немедленно приступают к обработке полученных сейсмограмм и определяют положение эпицентра землетрясения. Если эпицентр находится в океане, а землетрясение было достаточной силы, то на побережье, опасном цунами, объявляется тревога. Специальная служба с помощью сирен, громкоговорителей и световой сигнализации предупреждает население о приближающейся волне. Жители укрываются на возвышенных местах, недоступных действию волн. Все решает скорость обработки сейсмограмм. Сведения на опасные участки побережья должны быть переданы хотя бы за 5—10 мин. до подхода волны к берегу. В Японии и особенно на Камчатке и Курильских островах, которые расположены в непосредственной близости от зон возникновения подводных землетрясений, время между подземным толчком, вызвавшим цунами, и приходом волны на берег измеряется считанными минутами. За этот отрезок времени необходимо определить положение эпицентра землетрясения, время прихода волны в те или иные пункты побережья, передать по каналам связи тревогу и успеть вывести людей в безопасные места.

Служба оповещения о цунами в 50-х годах организована в США (на Гавайских островах), Японии и СССР.

Другой путь уменьшения катастрофических последствий цунами — это составление карт, которые в некоторой степени сходны с картами сейсмического районирования. В отношении цунами такое районирование проводится в пределах побережья. При построении карты цунами-опасности побережья принимаются во внимание максимальная высота происшедших ранее цунами; учитываются характер побережья, местоположение зон, где возникают землетрясения, вызывающие цунами, расстояние от них до берега и т. д. Подобные схемы являются важными документами при планировании и проектировании промышленного и гражданского строительства. Зная возможную максимальную высоту цунами и ту площадь побережья, которая может быть покрыта волнами, строители располагают строящиеся объекты за пределами досягаемости волн.

Нет никаких сомнений в том, что в самые ближайшие годы разрушительное действие цунами будет сведено почти к нулю.

ЗАЩИТА ОТ ВУЛКАНИЧЕСКИХ БЕДСТВИЙ

Наибольшую опасность при вулканических извержениях, по мнению Г. Тазиева, представляют игнимбритовые потоки. Излияние игнимбритов, зафиксированное на Аляске в 1912 г. распространилось на 30 км при ширине потока 5 км и 100-метровой толщине слоя. В результате образовалась знаменитая долина Десяти Тысяч Дымов.

Игнимбриты изливаются мгновенно, с молниеносной быстротой вырываясь из длинных трещин, внезапно открывающихся в земной коре под давлением магмы, до предела насыщенной газами. Они выплескиваются из этих трещин со скоростью более 100 км/ч, достигая порой 300 км. Состав извергаемой из чрева Земли массы — это суспензия, в которой стекловатые фрагменты лавы и мелкие раскаленные обломки насыщены горячими вулканическими газами. Такая консистенция игнимбритов придает им текучесть, позволяет захватить все живое, несмотря на то, что застывают они очень быстро. Колоссальные площади игнимбритовых покровов, накопившихся еще в третичном и четвертичном периодах, свидетельствуют о том, что такие катастрофы возможны и в будущем.

О приближении мощных вулканических извержений в некоторых случаях говорит необычное поведение животных. После катастрофического извержения Мон-Пеле 8 мая 1902 г. город был разрушен за считанные секунды. Погибло 30 тыс. человек, и был найден один-единственный труп кошки. Оказывается, еще с середины апреля животные почувствовали неладное. Перелетные птицы вместо того, чтобы, как обычно, сделать привал на озере вблизи города, устремились на юг Америки. На склоне Мон-Пеле обитало множество змей. Но уже во второй половине апреля они начали покидать обжитые места. За ними потянулись и другие пресмыкающиеся.

Разгадка поведения животных заключается, по-видимому, в том, что повышение температуры почвы, выделение газов, легкие сотрясения земли и другие тревожные явления, не улавливающиеся органами чувств человека, вызывают беспокойство более восприимчивых к ним животных.

Создание службы прогнозирования извержений потухших вулканов в настоящее время, пожалуй, дело более легкое, чем прогноз погоды. Вулканологические прогнозы основываются на фиксации изменений режима вулкана. Они осуществляются путем наблюдения за определенными физическими и химическими параметрами. Трудность заключается в истолковании наблюдаемых измерений.

За шесть месяцев до извержения Килауэа в декабре 1959 — январе 1960 г. сейсмографы уже сигнализировали о пробуждении вулкана. Благодаря сети наблюдательных станций на острове Гавайя научные сотрудники вулканологической обсерватории заранее определили глубину очагов — 50 км, что было неожиданно, так как нижняя граница земной коры там лежит всего на 15 км ниже уровня моря.

В последующие недели вулканологи отметили постепенное уменьшение глубины очагов и, замеряя скорость этого восхождения, установили, когда магма начнет выходить на поверхность. Тщательно изучая все явления, связанные, судя по опыту прежних исследований, с процессом восхождения магмы, вулканологи обсерватории зафиксировали, где именно (кратер Ики) и когда начнется извержение. В своих прогнозах они пошли еще дальше: после трехнедельного пароксизма они не только предсказали, что извержение еще не закончилось и возобновится с новой силой, но и указали на место повторного действия вулкана — близ селения Капоо. В результате удалось своевременно эвакуировать жителей этого селения.

Далеко не всегда можно точно истолковать показания сейсмографов и наклономеров, особенно в отношении чреватых опасными взрывами страто-вулканов, число которых весьма велико в пределах Тихоокеанского огненного кольца.

Одно из наиболее перспективных направлений по прогнозированию вулканических извержений — изучение эволюции химического состава газов. Установлено, что состав газов после извержения изменяется в следующем порядке: вначале выделяются НСl, HF, NH4. Cl, Н2 О, СО, О2 (галлоидная стадия), затем — H2 S, SO2. Н2 О, СО, Н2 (сернистая стадия), дальше — СО2. Н2. Н2 О (углекислая стадия) и, наконец, едва нагретый пар. Если активность вулкана возрастает, то состав газов изменяется в обратном порядке. Следовательно, постоянное изучение вулканических газов позволит предсказать извержение. Л. В. Сурнина и Л. Г. Воронина исследовали состав газов вулкана Эбеко. В одном его участке (так называемое Северо-Восточное поле) содержание НСl в течение ряда лет изменялось следующим образом (в объемн. %): 1957 г. — 0,19; 1960 г. — 0,28; 1961 г. — 2,86; 1962 г. — 5,06. Таким образом, количество хлористого водорода постепенно увеличивалось, что свидетельствовало о возраставшей активности Эбеко, завершившейся извержением в 1963 г.

В ряде случаев возможна активная защита от вулканических извержений. Она заключается в бомбардировке авиацией или артиллерией движущихся лавовых потоков и стен кратеров, через которые изливается лава; в создании дамб и других препятствий на пути движения лавы; в проведении туннелей к кратерам для спуска воды кратерных озер.

Дамбы и насыпи с успехом используются для борьбы с жидкими лавами Гавайских островов. Во время извержений 1956 и 1960 гг. каменные насыпи противостояли даже мощным лавовым потокам. Применение дамб и насыпей возможно и против некоторых грязевых потоков.

Для предотвращения грязевых потоков (лахар) необходимо спускать из кратеров избыточные воды. Для этого с наружного склона вулканического конуса в кратер проводят водоотводящий туннель. Таким способом был осушен Келун, с которым связано возникновение губительных лахар.

ВОЗМОЖНОСТЬ ПРЕДОТВРАЩЕНИЯ ВСТРЕЧИ АСТЕРОИДА С ЗЕМЛЕЙ

В 1967 — в начале 1968 г. неоднократно обсуждался вопрос о возможности столкновения с Землей микропланеты Икар в момент их наибольшего сближения 15 июня 1968 г.

В октябре 1937 г. астероид Гермес прошел мимо Земли всего лишь в 800 тыс. км, т. е. на расстоянии немногим более 100 земных радиусов. Икар в поперечнике имеет размеры не более 1 км. Следовательно, вес его должен быть равен 3 млрд. т. Если бы Икар столкнулся с Землей, то удар был бы равен взрыву 105 Мт тринитротолуола. Разрушительный эффект был бы намного значительнее, чем, например, при извержении вулкана Кракатау, когда возникшие в море волны погубили 36 тыс. человек.

Астероиды могут быть и значительно больших размеров, а следовательно, последствия их столкновений с Землей еще страшнее.

Очень редкое, по страшное по катастрофическим последствиям столкновение Земли с астероидом в недалеком будущем будет безопасно для человека. Уже современный уровень астрономии и вычислительный техники позволяет заблаговременно (за несколько месяцев) не только знать время, но и точно определить место падения на Землю космического пришельца. Это даст возможность заранее принять необходимые меры, резко уменьшающие последствия катастрофы (выселение людей из опасной зоны, расчет высоты волн на побережье в случае падения астероида в воду и т. д.). В принципе уже сейчас можно разрушить астероид с помощью ракет за некоторое время до того, как он достигнет пашей планеты.

ПРЕДОТВРАЩЕНИЕ СЕЛЕЙ

Возможности борьбы человека с коварными разрушительными силами природы можно продемонстрировать на примере «обуздания» селя в районе столицы Казахской ССР города Алма-Ата. Сель — это бешено мчащийся по долине горной реки поток, состоящий из грязи, щебня и валунов размером до метра и более. Образуется он вследствие бурного летнего таяния снега, когда талая вода постепенно впитывается ледниковыми валунно-галечными отложениями, а затем вся эта полужидкая масса лавиной низвергается по долине.

В 1921 г. чудовищный сель, свалившийся с гор ночью на спящий город, прошел Алма-Ату из конца в конец, фронтом в 200 м шириной. Не считая воды, грязи, обломков деревьев, одних лишь камней обрушилось на город столько, что, по подсчетам, их хватило бы для загрузки нескольких сот товарных поездов. И эти эшелоны, разогнавшись но склону, на курьерской скорости таранили Алма-Ату, разрушая и уничтожая дома, улицы. Объем селя определялся тогда в 1200 тыс. м 3 .

Опасность повторения такой катастрофы существовала постоянно. Город Алма-Ата рос. И с каждым годом бедствия от селя могли быть все более ужасными. Смелая мысль перекрыть путь селю искусственно созданной плотиной принадлежала академику М. А. Лаврентьеву. Он предложил воздвигнуть такую плотину с помощью направленного взрыва.

В конце 1966 г. направленные взрывы уложили 2,5 млн. т камня на дно урочища Медео. Возникла плотина, перекрывшая долину р. Алмаатинки. Селя пришлось ждать недолго. В июле 1973 г. гидрологические посты сообщили о возможности селя.

15 июля в 18 час. 45 мин. местного времени моренное озеро ледника Туюксу мгновенно вспучилось и сразу опало. Раздался характерный, похожий на хриплый вздох, звук, тут же переросший в зловещий грохот. Предсказанный, но всегда неожиданный сель рванулся вниз.

Пока точно не установлено, сколько воды извергла первоначальная морена. По-видимому, не меньше 100 тыс. м 3. Но через несколько минут в селе было уже не менее 1 млн. м 3 воды и камней. Однако на этот раз путь селю преградила плотина. Вот что рассказывает очевидец, находившийся на плотине в момент катастрофы.

День был знойный и тихий. Вдруг издали донесся грохот, будто за снежной вершиной хребта реактивный самолет брал звуковой барьер. Грохот исчез так же неожиданно, как и возник. Через 10 сек. за покрытым елями склоном горы взвился вверх огромный рыжий столб пыли, закрывший небо. Из-за поворота стремительно выкатился огромный грязевой вал. Он с ходу ударился о твердь котлована, потом отпрыгнул к противоположному склону, обрушившись на него всей своей тяжестью. На плотину Медео обрушился удар такой силы, какой, если не считать атомных взрывов, никогда еще не наносился по творению рук человеческих. Камни забили водоотводные трубы, а вздувшаяся река добавляла в котлован но 10— 12 м 3 воды ежесекундно. Уровень озера начал быстро подниматься. Вода грозила перехлестнуть плотину. Трудно вообразить, что могло бы произойти, если бы сель вместе с плотиной рухнул почти с двухкилометровой высоты на Алма-Ату.

Вода в котловане все прибывала и прибывала, но люди не дремали: спешно монтировались 16 мощных насосов для ее откачки и три трубопровода для сброса воды в опустевшее после закупорки плотины русло Малой Алмаатинки. Наконец, заработал один дизель, за ним — другой. Вода устремилась в нитку трубопровода и через плотину, по ступенчатому склону горы — в русло Малой Алмаатинки. К утру вода в котловане стала постепенно убывать.

Впервые в истории Средней Азии крупнейшее стихийное бедствие было не только предсказано, но и встречено по точному плану, а затем нейтрализовано. Благодаря научному прогнозу, четкой организации работ, героизму людей одержана победа в первой такого рода схватке с грозной стихией.

Плотина выполнила свою роль, но ведь сель может повториться. Осенью 1973 г. были начаты работы по укреплению плотины. Она поднялась на 10 м, а в дальнейшем поднимется еще на 30; 3,5 млн. м 3 твердого грунта легли на тело «старой» плотины. В будущем намечается отвод более 100 моренных озер, расположенных на высоте 3000—3500 м над уровнем моря.

* * *

Можно ли управлять погодой?

Надежное управление погодой — задача невероятно сложная. Энергия процессов, которые нагревают и охлаждают колоссальные воздушные бассейны или замораживают гигантские массы воды, очень велика. Такой энергии человек пока ничего не может противопоставить. И все-таки человек уже в состоянии активно воздействовать на погоду. Мы можем вызвать дождь или снег, рассеять туман или прервать образование града. Изучаются также пути предотвращения гроз. Американские ученые разработали специальную программу, в которой предусматривается засеивать грозовые облака металлизированными нитями. По их мнению, это может подавить грозовую активность туч. Ученые Советского Союза с этой же целью провели первые эксперименты по применению грубодисперсных порошков, которые направлялись в облака.

Как только приближается крупная облачность, в дело вступают специальные оперативные локаторы. Дальнобойные разведчики неба предсказывают опасность на расстоянии до 300 км. С их помощью определяют не только расстояние до цели, но и насколько облачность коварна, не несет ли с собой града.

По сигналу более чем двухметровая ракета «Облако», как бы не спеша, покидает гнездо установки и направляется навстречу грозе садов. В ее чреве специальный химический реагент — йодистый свинец. Встретив на подступах (за 8 км) на высоте до 6 км мощное облако, ракета проникает в него, а затем опускается на специальном парашюте, распыляя реагент. Проходят минуты, и кристаллические образования, которые могли бы превратиться в град, уже не опасны. Вместо грозного града на территорию, занятую садами, проливается дождь.

В Грузии разработан комбинированный метод борьбы с этим бедствием. Сначала в облако забрасывается поваренная соль, которая не позволяет каплям воды замерзнуть и превратиться в град. Но если этот процесс все же начался, то тучу обстреливают снарядами и ракетами, которые начинены специальными реагентами. Перспективным представляется способ тушения лесных пожаров с помощью искусственно вызванного дождя.

В опытном порядке ведутся работы по прогнозированию и контролю за снежными лавинами. Создана сеть сейсмических приборов, которые регистрируют незначительные колебания, вероятно, возникающие в снежной массе перед началом ее движения по склону. Ведутся измерения плотности снежного покрова, абляции (уменьшение массы ледника или снежного покрова в результате таяния), объема выпадающих осадков, характера процесса отложения снега, температуры воздуха и скорости ветра.

В последние годы наметилась реальная возможность по крайней мере вдвое уменьшать силу урагана. Поскольку огромная энергия, требуемая для «поддержания» урагана, создается частично за счет испарения воды океана, возникла мысль уменьшить это испарение за счет тонкой пленки химических веществ.

Искусственная пленка на поверхности воды играет двойную роль. Во-первых, она уменьшает волнообразование и тем самым сокращает площадь поверхности, с которой испаряется жидкость. Во-вторых, эта пленка толщиной всего в несколько молекул служит физической преградой для испарения воды.

При испытаниях применялись различные химические вещества, которые распылялись отдельными полосами с кораблей и самолетов на участке площадью 2,6 км 2. Эти полосы, легко различимые с воздуха по уменьшенному блеску, фотографировались с самолета.

Через несколько часов после распыления отдельные полосы сливались и покрывали большую часть испытательного участка. В результате значительно уменьшалась величина воли, а их энергия снижалась на 46% по сравнению с энергией волн на чистой водной поверхности.

Разрабатываются и другие способы воздействия на тропические циклоны. Ученые полагают, что рассчитанные взрывы на пути мощных восходящих потоков воздуха могут если не погасить их, то сильно ослабить.

* * *

Выше мы говорили о том, что с развитием науки и техники опасность природных катастрофических явлений резко уменьшится. Значительно более серьезные последствия могут иметь относительно быстрые климатические и биологические изменения на земной поверхности, вызванные деятельностью человека. Физические процессы на Земле находятся в состоянии неустойчивого равновесия. В XVIII — в. началась беспощадная вырубка древесины для промышленности и строительства. Площадь лесов на Земле сократилась с 7200 млн. до 3704 млн. га, а лесопосадки, которые применяются сравнительно недавно, пока покрыли всего 40 млн. га. Сейчас каждый человек в течение жизни «расходует» столько древесины, сколько дает роща из 300 деревьев. Постоянная вырубка леса может привести к необратимым последствиям в природе. Сведение лесов в Чилийских Андах привело к тому, что почти 3/4 сельскохозяйственных земель подвержены эрозии.

Интенсивная индустриализация может в будущем вызвать изменение теплового баланса нашей планеты. В настоящее время тепло, выделяемое промышленными предприятиями, еще невелико по сравнению с теплом, поступающим от Солнца,— 0,01%, но количество энергии, используемое человеком в некоторых городах и промышленно развитых районах, приближается к количеству солнечной энергии, падающей на те же площади. Если в будущем сохранится настоящий темп роста производства энергии (около 10% в год во всем мире), то недалеко время, когда вырабатываемое на Земле тепло может привести к заметным изменениям климата.

Некоторые аспекты изменений климата будут благоприятны для народного хозяйства, но другие могут создать различные трудности. Одним из последствий такого изменения термического режима может быть сначала отступание, а затем полное разрушение ледяного покрова в Северном Ледовитом океане.

Сильно изменяется промышленностью химический состав атмосферы. Ежегодно в атмосферу выбрасывается около 6 млрд. т углерода. В течение всего прошлого столетия в процессе индустриализации при сжигании топлива было введено в атмосферу более 400 млрд. т углерода. Концентрация углерода в воздухе, которым мы дышим, повысилась вследствие этого на 10%. Если сжечь все известные запасы нефти и угля, она увеличится в 10 раз. Некоторые специалисты считают, что избыток углерода в настоящее время превышает поглощение и может нарушить тепловой баланс Земли из-за явления, называемого парниковым эффектом. Двуокись углерода пропускает солнечные лучи, но удерживает тепло у поверхности Земли. Высказывалось мнение, что увеличение углекислоты в атмосфере может сильно повысить температуру на земной поверхности. Однако американские ученые С. Расул и С. Шнайдер пришли к выводу, что по мере увеличения содержания двуокиси углерода рост температуры замедляется. Следовательно, катастрофического события не предвидится. Даже восьмикратное увеличение содержания углерода, что очень маловероятно в течение ближайших тысячелетий, повысило бы температуру земной поверхности меньше чем на 2° С.

Гораздо важнее эффект возрастающего содержания пыли в атмосфере. За последние 60 лет общее содержание взвешенных частиц в атмосфере могло удвоиться. Пыль понижает поверхностную температуру, так как она эффективнее задерживает солнечное излучение, чем земное. По мере того как количество пыли увеличивается, понижение температуры ускоряется: благодаря аэрозолю Земля становится лучшим отражателем солнечного света. В результате такого лавинообразного отрицательного тепличного эффекта возможны изменения климата в большом масштабе.

Есть предположение, что в течение ближайших 50 лет ожидается рост загрязнения в 6—8 раз. Если эта скорость засорения усилит существующую теперь непрозрачность атмосферной дымки в четыре раза, то земная температура понизится на 3° С. Столь значительное понижение средней температуры земной поверхности, если оно продлится несколько лет, окажется достаточным, чтобы начался ледниковый период.

По признанию Европейского регионального комитета Всемирной организации здравоохранения, загрязнение воздуха уже стало экономическим, социальным и санитарным бичом Европы. В индустриальных районах ФРГ на каждом квадратном километре территории оседает от 8 до 15 т пыли в сутки, а экономический ущерб от пыли в Великобритании исчисляется многими миллионами фунтов стерлингов в год: быстро ржавеет металл, распадается ткань, погибают растения. Национальная академия наук США установила, что примерно четверть всех заболеваний в крупных американских городах вызвана загрязнением атмосферы автотранспортом и промышленностью.

Во многих реках и озерах уменьшилось количество кислорода, вода потеряла прозрачность, погибли обитавшие здесь организмы.

Известные специалисты Харпер и Аллен подсчитали, что за последние 20 веков охотники и колонисты уничтожили 106 видов крупных зверей и 139 видов и подвидов птиц. За первые 1800 лет вымерло 33 вида. Затем истребление фауны пошло нарастающим темпом: за последующее столетие уничтожено еще 33 вида. В XIX в. было перебито 70 видов животных, а за последние 50 лет — еще 40 видов. Еще более неутешительны перспективы на ближайшее будущее: 600 видов животных находятся сейчас на грани полного уничтожения. По-видимому, они не доживут и до конца нашего века.

Вымирание почти тысячи видов в течение двух тысячелетий при длительности эволюционного развития организмов, измеряемой сотнями миллионов лет, представляет собой катастрофу более резкую и быструю, чем вымирание динозавров в конце мезозойской эры.

Еще 30 лет назад многим казалось, что просторы Мирового океана настолько велики, что загрязнить его невозможно. И вот оказывается, что в последнее 10-летие загрязнение морских вод отходами промышленности, в особенности нефтью и ее продуктами, приняло чудовищные размеры.

Нефть, разлитая в море, растекается на поверхности воды, образуя топкую пленку, которая нарушает обмен воды с газами атмосферы и тем самым нарушает жизнь морского планктона, создающего кислород и первичную продукцию органического вещества в океане. Подсчитано, что ежегодно в результате различного рода аварий в океаническую воду сбрасывается 10 млн. т нефти. По данным федерального правительственного агентства США, занимающегося исследованиями атмосферы и океана, 665 тыс. квадратных миль водной поверхности континентального шельфа и Карибского бассейна загрязнены отходами американской промышленности. В заливе Эскамбия, близ Пенсаколы (штат Флорида), за один день погибло 15 млн. экземпляров сельди.

Это уже не первый случай массовой гибели рыбы в результате загрязнения моря промышленными отходами. Полагают, что причина гибели — недостаток кислорода в воде. Сельдь задохнулась, а омары, крабы и рыба, способные долго жить в сильно загрязненной воде, получили «ракообразные» опухоли и другие болезни.

Природу нужно беречь, защищать. На это направлены сейчас усилия во многих странах, и прежде всего в Советском Союзе. Вопросами охраны природы занимаются специально созданные постоянные комиссии Верховного Совета СССР. Наше государство вкладывает огромные средства в строительство очистных сооружений на химических и нефтеперерабатывающих заводах, в создание полезащитных полос, ведет борьбу с эрозией почв, осуществляет охрану недр, водных ресурсов и т. д.

Ученые многих стран объединяют усилия для разностороннего изучения Земли как планеты и отдельных ее составляющих — биогеносферы (географической оболочки), атмосферы, гидросферы и т. д. Большую роль в этом отношении призвана сыграть Международная биологическая программа. Цель ее — оценить биологические ресурсы земного шара, познать глубинные закономерности в развитии живого вещества в пределах всей биогеносферы, «спланировать» использование живой природы для будущих поколений. Работы по планам Международного гидрологического десятилетия обогатят человечество точными данными о количестве, составе и круговороте воды в глобальном масштабе.

Велика сила человека в борьбе со стихийными явлениями природы. Разум и техническая оснащенность позволяют уже сейчас предотвратить или значительно уменьшить многие естественные катастрофы. Но следует подчеркнуть, что наше воздействие на природу становится настолько ощутимым, что незаметные на первый взгляд явления способны вызвать необратимые процессы катастрофического характера.

Человек в состоянии предотвратить катастрофу, но может ее и вызвать. Отсюда ясно, что глубокое и всестороннее изучение природных явлений в их сложной взаимосвязи становится одним из основных научных направлений. Чтобы правильно управлять природой, ее нужно хорошо знать.

И. А. Резанов. ВЕЛИКИЕ КАТАСТРОФЫ В ИСТОРИИ ЗЕМЛИ

какой фильм про катастрофы

чем вызваны техногенные катастрофы

почему происходят экологические катастрофы